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Abstract. Clusters grown with the dielectric breakdown model (DBM) in the cylinder 
geometry show two growth phases: a scaling regime for cluster heights smaller than the 
cylinder circumference and a subsequent steady state, which is translational invariant in 
the main growth direction. The box-counting dimension of one-dimensional intersection 
sets of the clusters is studied for six different values of the growth parameter 7 and four 
cylinder circumferences. We find that in the scaling regime this dimension depends on the 
height at which the intersection is made and the clusters are thus inhomogeneous. The 
results also show that clusters in the steady state are translational invariants in the main 
growth direction and self-similar in the direction perpendicular to it.  A comparison between 
our findings and the theoretical results obtained from the fixed scale transformation 
approach by Pietronero er a/, shows good agreement. 

The dielectric breakdown model ( DBM) [ 13 is a growth model well known to give rise 
to fractal structures with fractal dimensions [2] depending on the growth parameter 
called 7. For 7 = 1 one recovers the diffusion-limited aggregation (DLA)  [3] model 
and for 7 = 0 the Eden model [4]. The significance of these models lies not only in 
their success as physical models for fractal features in a wide variety of phenomena, 
but also in their role as simple, well defined basic representatives of irreversible growth 
processes with infinite memory and long-range interactions [5-81. These models can 
be studied in many different geometries, of which the most popular are the circular 
geometry [ l ,  31 in which growth starts in one point, and the cylinder geometry [6,8]. 
The latter geometry consists of an L x  M square lattice, with the two sides of height 
M identified so as to form a cylinder of circumference L. In the dielectric breakdown 
model in this geometry growth starts by putting the lower circle (the substrate) at 
electrostatic potential 0 and the upper one at potential 1. The cluster at time zero is 
the substrate and as in DBM in the circular geometry [I] ,  one takes the probability of 
occupying one of its empty nearest neighbours, proportional to the modulus of the 
electric field there, to a power 7 (the growth parameter). 

In the cylinder geometry one can distinguish two modes of growth [8-lo]: a scaling 
regime for cluster heights ( h )  smaller than the cylinder circumference L, and the steady 
state for h >> L. In the scaling regime many properties, like for instance the number 
of particles and the interface thickness, scale as a function of the height of the clusters. 
In the steady state, on the other hand, the different quantities, on average, become 
constant or scale trivially with the height. 

Recently Pietronero er a1 [ l l ]  introduced a new theoretical approach for the 
determination of the fractal dimension of clusters grown with the dielectric breakdown 
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model. This fixed scale transformation (FST) theory allows the computation of the 
box-counting dimension of one-dimensional intersections, perpendicular to the main 
growth direction, of clusters in the steady state in the cylinder geometry (see figure 1) .  
In this letter we will present numerical results on these intersection set dimensions 
as a function of the height of the clusters, for six different values of the growth 
parameter 7. 

Our conclusions from the present numerical results are that, the box-counting 
dimension of intersection sets is a well defined quantity implying that these sets are 
(statistically) self-similar. In the scaling regime the intersection set dimensions depend 
on the height. This inhomogeneity is related to the self-affineness of DBM clusters and 
is discussed elsewhere [SI. The dependence then gives way to  a constant intersection 
set dimension in the steady state. A comparison between our numerical results and 
those of the FST theory to third order in the closed-open approximation [ l l ] ,  gives 
good agreement. Since we numerically studied the dimensions in cylinders of different 
circumferences, we are also able to study finite-size effects. These turn out to be modest 
and quite the same for the different 7 values studied. 

This letter is organised as follows. We will first discuss the box-counting procedure 
on the intersection sets and after some remarks about the clusters and the method of 
analysis, we will present results on the dimension of intersection sets as a function of 
their height in the cluster. 

The set S i  of occupied sites at height h shown in figure 1 ,  belonging to a cluster 
grown in the cylinder geometry, is called an intersection set. In order to determine 
the box-counting dimension D' of this intersection set, we cover it with boxes of size 
E,  = 2 " ,  n =0, 1,. . . , k, with L =  2&. If the number of boxes of size E ,  containing at 
least one occupied site of the cluster is denoted by N ( E , ) ,  then DL is given by 

(1 )  

Because of the translational invariance of the clusters in the main growth direction in 
the steady state, the box-counting dimension D,, is there given by 

( 2 )  

N ( E,, ) - E : - . 

D,, = 1 + DI .  

We will have numerical results on D,,, allowing us to verify the validity of (2)  in a 
very direct manner. 

In order to enhance the statistics in the numerical determination of the box-counting 
dimension D'(h )  of the intersection set at height h, we rotated the clusters, while 
keeping the position of the boxes (intervals) fixed. In this way one obtains different 
boxings for the same cluster. Six rotations were made, which resulted from translations 

Figure 1. A cluster in a cylinder geometry with circumference L and an intersection set 
S i  at height h. 
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of the cluster parallel to the substrate, over distances 1 , 3 ,  5,9, 17 and 33, modulo L. 
In addition, we also averaged over the number n ( 7 ,  L ) ,  of clusters grown with the 
growth parameter in cylinders of circumference L. The value of D'(h) was deter- 
mined from the slope of the plot of In E against the logarithm of the average number 
of boxes and versus the average of the logarithm of the number of boxes. Both methods 
gave the same results, within error bars. 

Clusters were simulated on a CRAY X-MP [ 121 for four different cylinder circumfer- 
ences, namely L = 256, 128, 64 and 32, (i.e. L = 2', i = 8 , .  . . ,5) and six values of the 
growth parameter, 7 = 0.25, 0.50, 0.75, 1.00, 1.25 and 2.00. The height of the cylinders 
was always taken to be three times their width. Their total number and the number 
of particles they contain each are shown in table 1 .  In figure 2 we show an example 
of an r) = 0.75 cluster in a cylinder of circumference L = 256, containing 30 000 particles. 

Table 1. The number of clusters ( n ( q ,  L ) )  of type (7, L )  and the number of particles 
contained in each of them. For example, we simulated 20 clusters with growth parameter 
7 = 1.00 in a cylinder with circumference L =  128, each containing 6000 particles. 

7 L = 256 L = 128 L = 6 4  L = 3 2  

0.25 10 x 30 000 20 x 20 000 20 x 5550 20 x I5 000 
0.50 10 x 30 000 20 x 13 800 20 x 3900 20 x 990 
0.75 10x30000 20 x 8 400 20 x 3900 20 x 720 
1 .oo 20x15000 20 x 6 000 20x 1500 20 x 540 
1.25 20x15000 20 x 3 000 20x 1320 20 x 390 
2.00 20 x 4 000 20 X 1 650 20x510 20 x 180 

In  figures 3(a) and 3 ( b ) ,  we show the dependence of D'(h)  on h, for all 77 values 
in cylinders of respectively widths L = 256 and L = 128. The behaviour is qualitatively 
the same for all r) values: we find that the fractal dimension of the intersection sets 
in the scaling regime varies with the height. It starts with the maximum dimension 
D'(0) = 1 at the lower electrode and then continuously decreases to the asymptotic 
value in the steady state. This shows that the clusters in the scaling regime are nor 
homogeneous fractals. We show in [8 ,13]  that they are self-affine. 

In principle the steady state goes on indefinitely, but due to limitations which are 
practical in nature, we only have a finite number of particles, which is the reason for 
the sudden drop at large heights. Note that neither the r) = 0.25 nor the r) = 0.5 clusters 
seem to have reached the steady state. The values of D' in  the steady state, discussed 
below, should therefore be considered with some caution for these two values of the 
growth parameter: they may be too high. 

In order to determine the average box-counting dimension DA of the steady state, 
the starting height h,, of the steady state and its length Ah, available from the present 
finite particle number simulations, was determined from the height interval in which 
the number of sites in the intersection sets was constant. 

In figure 4 we show the plots of In N ( E )  against In E for r) = 1, L =  256, 128, 64 
and 32, involving an average over the height interval in the steady state. The dimension 
0: is given by minus the slopes of the straight lines through the points. These slopes 
were determined by a least-squares fit through all the points except for those correspond- 
ing with the largest and smallest boxes. The fact that these data lie on a straight line 
and thus that (1) holds, implies the self-similarity of the intersection sets. The 



L1064 Letter to the Editor 

Figure 2. An r) = 0.75 cluster containing 30 000 particles, grown on  the surface of a 
cylinder of circumference 256 and  height 768. i n  the above picture there are  periodic 
boundary conditions in  the horizontal direction. 

dimensions are shown in table 2. The L = CO values are the results of a 1/ L +  0, linear 
extrapolation from the finite L values for D'. This is achieved by means of a 
least-square fit through the finite L = 2', . . . ,2 '  results, shown in figure 5. It should 
be noted that there is a systematic upward curvature in the D' against 1 / L  plots, 
implying that the L = CO values are somewhat larger than the linear estimates given in 
table 2. Except for the 7) = 0.50, the lack of pronounced finite-size effects nevertheless 
shows the results to be reliable and is another piece of numerical evidence for the 
reality of the 7 dependence of the fractal properties of D B M  clusters. The strong 
curvature in the 9 = 0.50 data, is due  to the already mentioned fact that the L = 128 
and L = 256 clusters have not reached the steady state. The same is true for the 7 = 0.25 
clusters, but it is less visible, becsuse the dimension is very near to the upper bound 1. 

Although the constancy of the value of D' in the steady state already guarantees 
the validity of (2), we performed an  explicit check. In table 3 we show the numerical 
results for the box-counting dimension in the steady state of the L = 128 cylinder. 
These results are obtained by determining the box-counting dimension of an L x L 
part of the cluster in the steady state [8]. Using (2), we conclude that these results 
agree very well with those in table 2. This thus confirms the validity of this equation. 

In figure 6 we plotted D,, using the values of DL( L = CO) in table 2, together with 
the FST theory results for first order in the closed approximation and  third order in 
the closed-open approximation. As was put forward in [ 1 1 1 ,  the fact that the first-order 
approximation is too low compared with the numerical results is due  to an  overestima- 
tion of the screening due  to the periodic boundary conditions on the small cells 
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Figure 3. The dependence of the intersection set dimensions D - ( h )  as a function of the 
height h. From top to bottom the curves are for r )  = 0.25, 0.5, 0.75, 1.00, 1.25 and 2.00. 
( a )  is for cylinder width L =  256 and ( b )  for L =  128. 

considered and  also due to the low order of the calculation. As was also already 
remarked in [ 111, the convergence for small 7 values is very slow in the FST approach. 
This is the reason for why also the closed-open approximation is too low for these 
values. On the other hand the convergence is fast for large 7 values, but we find that, 
for these values, the theoretical results overshoot the numerical result presented here. 
Now from the nature of this approximation, it follows (see [ l l ]  or [8]) that (after 
convergence) it is an  upper bound for the full FST approach. We therefore believe 
that the results of the full FST approach will be closer to the numerical results. 

We presented new numerical results on the dielectric breakdown model, mainly 
inspired by the fixed scale transformation theory [ 111. In particular we concentrated 
on  the box-counting dimension of intersection sets, for six different values of the 
growth parameter 7) and four cylinder circumferences, thereby allowing us to study 
finite-size effects. We find that in the scaling regime this dimension depends on  the 
height of the intersections, but it then converges to a constant value in the steady state. 
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Figure 4. The log-log plots from which the box-counting dimension D' of the intersection 
sets were determined by means of a least-squares fit. The results, together with the values 
extrapolated to L = 00, are shown in table 2. 

Table 2. The box-counting dimension D- for the intersection sets in the steady state. The 
t = ix. values are obtained from a linear extrapolation of the finite-size data against 1/ L. 

1) L = 3 2  L = 6 4  L =  128 

0.25 0.983 * 0.008 0.990 * 0.005 
0.50 0.76 i 0.02 0.77 * 0.02 
0.75 0.648 i 0.008 0.67 * 0.02 
1 .oo 0.552 i 0.005 0.549 i 0.003 
1.25 0.455 i 0.008 0.461 * 0.004 
2.00 0.286 f 0.003 0.278 * 0.005 

0.973 * 0.01 

0.676 * 0.007 
0.563 i 0.04 
0.473 * 0.002 

0.8 i 0.02 

0.282 * 0.005 

0.991 i 0.004 0.985 f 0.009 
0.86 * 0.02 0.875 i 0.03 
0.689 I 0.006 0.691 * 0.003 
0.588 * 0.003 0.58*0.01 
0.483 * 0.004 0.489 * 0.003 
0.300 * 0.005 0.30 * 0.01 

0.2 
0 0.8 1.6 2.4 3.2 4.0 

1/f ( x l 0 - i )  

Figure 5. Linear extrapolation to L = ix. of the box-counting dimension of the intersection 
sets in the steady state. The numbers are shown in table 2. 
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Table 3. The box-counting dimensions in the steady state of DBM clusters for different 
values of the growth parameter 17 in a cylinder of circumference L = 128. 

0.25 1.977 f 0.008 
0.50 1.87 * 0.02 
0.75 1.73 i 0.03 
1 .oo 1.59 * 0.01 
1.25 1 S O  * 0.02 
2.00 1.32 i 0.01 

1 . 0 1  , , , , 
0 0.5 1.0 1.5 2.0 

r, 

Figure 6. Dependence of the fractal dimension D on the growth parameter 7 for I>BM in 
two dimensions. The broken curve refers to the simplest approximation to the full FST 

approach, in which one only considers cells with periodic boundary conditions up to first 
order. The full curve is the third-order result of the open-closed approximation to the full  
FST. This is the most sophisticated approximation in [ 111. The dots present our numerical 
results. 

These results show that, unlike in the scaling regime where they are self-affine, the 
clusters in the steady state are translational invariant in the main growth direction and 
self-similar in the perpendicular direction. A comparison between our findings and 
the theoretical results obtained from the FST approach, yields good agreement. 
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